<table>
<thead>
<tr>
<th>Study</th>
<th>Pt #</th>
<th>Mean F/U</th>
<th>Clinical outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tarazov 1997</td>
<td>6</td>
<td>12-48 m</td>
<td>Significant relief in 66.6%, partial relief in 33.3%, no relief in 15.8%</td>
</tr>
<tr>
<td>Capasso 1997</td>
<td>19</td>
<td>15.4 m</td>
<td>Significant relief in 57.9%, partial relief in 9.7%, no relief in 26.3%</td>
</tr>
<tr>
<td>Maleux 2000</td>
<td>41</td>
<td>19.9 m</td>
<td>Significant relief in 58.5%, partial relief in 9.7%, no relief in 31.8%</td>
</tr>
<tr>
<td>Venbrux 2002</td>
<td>56</td>
<td>22.1 m</td>
<td>Significant relief in 100%</td>
</tr>
<tr>
<td>Pieri 2003</td>
<td>33</td>
<td>6 m</td>
<td>Significant relief in 96%, partial relief in 4%</td>
</tr>
<tr>
<td>Kim 2006</td>
<td>127</td>
<td>12 m</td>
<td>Significant relief in 85%, no relief in 12%, 3% worsened</td>
</tr>
<tr>
<td>Kwon 2007</td>
<td>67</td>
<td>45 m</td>
<td>Significant relief in 82%, no relief in 15%, 3% worsened</td>
</tr>
<tr>
<td>Gandin 2008</td>
<td>38</td>
<td>44.8 m</td>
<td>Significant relief in 100%</td>
</tr>
</tbody>
</table>

Adapted from DD Kies and HS Kim. Phlebology 2012 27: 52
Gonadal Vein Embolization: Treatment of Varicocele and Pelvic Congestion Syndrome

Mark A. Bittles, M.D., and Eric K. Hoffer, M.D.

ABSTRACT

Therapeutic embolization of the gonadal veins is performed on male and female patients for different clinical situations using similar techniques. The testicular varicocele is a common clinical problem associated with pain and reduced fertility rates. In women, chronic pelvic pain can be attributed to pelvic congestion syndrome, which is said to result from retrograde flow in incompetent ovarian veins. Both of these clinical problems respond well to gonadal vein embolization. In this article, we review the clinical evaluation, diagnostic workup, and technical aspects of percutaneous intervention of gonadal vein embolization. The supporting literature is also reviewed.

KEYWORDS: Gonadal vein embolization, varicocele, pelvic congestion syndrome, interventional radiology

Objectives: On completion of this article, the reader should (1) be able to understand the clinical aspects of the male varicocele and of pelvic congestion syndrome, and (2) be familiar with treatment by gonadal vein embolization.

Accreditation: Tufts University School of Medicine (TUSM) is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

Credit: TUSM designates this educational activity for a maximum of 1 AMA PRA Category 1 Credit™. Physicians should only claim credit commensurate with the extent of their participation in the activity.

Incompetence and retrograde flow in the gonadal veins can result in a varicocele in the male and pelvic congestion syndrome in the female. Venography and therapeutic embolization of incompetent gonadal veins are performed on male and female patients for different clinical situations using similar techniques. The testicular varicocele has been extensively studied because it is considered a treatable cause of infertility. The female equivalent, retrograde flow in incompetent ovarian veins associated with chronic pelvic pain, is pelvic congestion syndrome (PCS). This article is intended to describe the clinical situations associated with varicocele and PCS, review the literature supporting percutaneous treatment of these conditions, and describe the imaging findings and therapeutic interventional techniques.

MALE PATIENT

Clinical and Anatomic Considerations

A varicocele is an abnormal distension of the pampiniform venous plexus, the venous drainage from the testicle. The cause is usually retrograde flow in or impaired drainage of the testicular or internal spermatic vein (ISV) and may be associated with infertility or pain. Varicoceles are significant because they are the most common treatable cause of male factor infertility and...
present in 30 to 40% of infertile men.1,2 Controversy arises due to the 20% incidence of varicocele in the normal male population,3 the imprecision of noninvasive diagnosis, and the debated evidence that repair improves pregnancy rates.

Veins emerge from the mediastinum testis to create a loose network called the pampiniform plexus. The plexus begins in the scrotum and extends into the spermatic cord. The arteries supplying the testes course through the plexus, and the arterial blood is cooled from abdominal temperature to testicular temperature by counter-current heat exchange. The anterior portion of the plexus coalesces to form the ISV, which passes through the inguinal canal and ascends in the retroperitoneum alongside the spermatic artery. The spermatic vein commonly divides at the L4 level into medial and lateral divisions. The lateral is the most constant. On the left, it usually drains into the posterior-inferior aspect of the left renal vein; on the right, it drains into the anterolateral wall of the infrarenal inferior vena cava (IVC). The variable medial branch anastomoses with ureteral veins and may communicate across the midline.4 Alternative drainage pathways of the ISV include perirenal, retroperitoneal, and lumbar veins. Parallel collateral pathways are frequently seen on venography, particularly after a failed surgical ligation or sclerotherapy of the main ISV.

Varicoceles form due to absence or insufficiency of the valves in the ISV. The prevalence of left-sided varicocele suggests a relation to the more indirect path of the left ISV to the IVC via the renal vein. A majority of clinical varicoceles are on the left, and in most reports the incidence of right or bilateral varicocele ranges from 10 to 15%.5,6 When specifically sought, however, right-sided reflux can be identified in 50 to 83%.7 In the adult male, a unilateral right-sided varicocele warrants evaluation for obstructive retroperitoneal pathology, such as renal tumor, adenopathy, or situs inversus.

Adverse effects on spermatogenesis are thought to be due to impaired heat dissipation in the pampiniform plexus,8 or reflux of adrenal or renal metabolites to the testes.2 The pathophysiology is not well defined, but decreased testicular volumes are found in both fertile and infertile patients, with changes more pronounced in the infertile patients.9 Hypotrophy of the testis and larger varicoceles correlate with decreased sperm counts and motility.10 Varicoceles are associated with a time-dependent decline in testicular function and size.11

There is still debate about whether, when, and how to treat a varicocele. Pain and infertility are the most common clinical scenarios that present to the interventional radiologist. For the infertile adult, the American Society of Reproductive Medicine recommends that treatment be offered if the semen parameters are abnormal and the varicocele is palpable.12 An important third group is the asymptomatic adolescent male with a varicocele. Prophylactic varicocele repair in the adolescent is recommended if there is a reduction in testicular size (2-mL difference in volume compared with the other tests or two standard deviations with respect to normal testicular volume),13 bilateral varicoceles, or impaired spermatogenesis beyond age 18 years.14

Diagnostic evaluation for varicocele starts with a physical examination. The patient should be examined in a warm room in the standing position, preferably after standing 5 minutes. The scrotum is first visually inspected for obvious distensions around the spermatic cord. Palpation should be performed with the patient relaxed and during Valsalva maneuver. A palpable varicocele has been described as a bag of worms. More subtle varicoceles may feel like a thickened cord, with asymmetry compared with the opposite side. The classic grading system commonly used includes the following categories15:

Grade 1: Varicocele palpable only during Valsalva
Grade 2: Varicocele palpable in the standing position
Grade 3: Varicocele detectable by visual scrutiny alone

Limitations of physical the examination include the subjectivity of the examination and that it has only 50 to 71% sensitivity with respect to the gold standard demonstration of reflux on venography.16,17 Although magnetic resonance imaging (MRI), computed tomography (CT), and thermography have been used as diagnostic tests, the duplex ultrasound examination has a better result, with 97% sensitivity and 94% specificity with regard to venography; it is commonly performed to confirm physical findings before transcatheter therapy.1,18

On ultrasound examination, a varicocele should have two prominent tortuous veins in the pampiniform plexus that are at least 2 mm in diameter and that increase in size with the Valsalva maneuver (Fig. 1A).19 Reflux that lasts at least 2 seconds correlates with positive venography.20

Spermatic Venography

Venography remains the diagnostic gold standard, although it is now usually only performed before therapeutic intervention. Access may be from either a femoral or jugular approach. Authors who favor a jugular approach cite the ability to perform the entire procedure through a single catheter. The femoral approach frequently requires a sheath or guiding catheter (5F inner diameter) to stabilize the renal vein access and permit coaxial passage of a 4F or 5F Cobra-2 catheter into the ISV. A venogram from the midportion of the renal vein is performed during the Valsalva maneuver to document renal vein patency and to show left ISV incompetence (Fig. 1B). Rotation of the tip of the diagnostic catheter posterior and inferior is often enough to select the spermatic vein. Once selected, the catheter is advanced a few centimeters and a venogram is performed with
Valsalva (Fig. 1C). This injection confirms retrograde flow and identifies any parallel channels that may be present. A third injection is then performed in the mid-spermatic vein, at the mid-sacroiliac (SI) joint level, to clearly define the remainder of the ISV anatomy to the level of the pampiniform plexus, confirm retrograde flow, and identify any connections that may provide aberrant supply to the varicocele (Fig. 1D).

The spermatic vein may spasm when cannulated. Often the guidewire and catheter will still advance into the vein and the procedure can continue. If the catheter will not easily advance, then waiting for 5 to 10 minutes can often allow the vein to reopen. Injection of 50 to 100 μg of nitroglycerin may help. The best approach is to minimize the manipulation and trauma to the vein through the use of hydrophilic or 3F catheters.

The procedure on the right is similar. A cavogram is rarely required to identify the origin of the right spermatic vein. A recurved catheter such as Simmons 1 works well from a femoral approach. The tip usually first finds the renal vein, then is retracted, rotated slightly anteriorly, and brought inferiorly until it enters the origin. The right ISV will rarely enter at the inferior aspect of the right renal vein. A venogram is performed during a gentle Valsalva so as not to dislodge the catheter. Care is taken not to pull the catheter tip too
far into the vein, as the only valve may be near the origin, and incorrect diagnosis of incompetence is made if the valve is crossed.

If injection at the orifices of the spermatic veins does not demonstrate reflux, a renal venogram with Valsalva is performed to identify aberrant incompetent collateral supply to the more caudal spermatic vein. If negative, an internal iliac study with an occlusion balloon may identify a source.

Anatomic variations that are pertinent to transcatheter embolization or sclerosis of the ISV were described by Sigmund and colleagues. Type 0 is normal; there is no reflux on venography. Type I is a single testicular vein without valves. Type II has afferent collateral medial retroperitoneal vessels to the ascending lumbar or retroperitoneal veins. There are two subtypes: IIa is without and IIb is with a competent valve at the ISV entry to the renal vein. Type III is a duplicated ISV. In type IV, there is collateral flow from the more lateral renal and perirenal veins to the ISV. This is also divided into subtypes: IVa is without and IVb is with a competent valve that is bypassed by an insufficient collateral. Type V is a bifurcated renal vein with a retroaortic component.

The classifications carry prognostic significance because technical success for transcatheter treatment is reduced in types IIb and IVb due to a frequent inability to pass the competent upper valve; in types IIa and IVa uncontrolled runoff through collaterals limit the effect of sclerotherapy.

Treatment
There are many methods to occlude the spermatic vein. The first use of metal coils for embolization was described in 1978 by Lima et al. Since that time, additional materials have been reported including detachable balloons, boiling contrast, sclerosing agents (e.g., sodium tetradecyl sulfate [Sotradecol], polidocanol, alcohol), and liquid adhesives (e.g., cyanoacrylate). Tungsten coils were used due to their improved visibility. However, they have been discontinued because they were found to be biodegradable leading to increased tungsten levels in the blood. Stainless steel, platinum microcoils, and/or sclerosants are now the most frequently used embolics.

The main goal of treatment is to interrupt retrograde flow into the pampiniform plexus from the ISV or any collateral vessel. This entails occlusion of the ISV low in the pelvis from just above the inguinal ligament to ~5 cm from the confluence of the spermatic vein with the renal vein (Fig. 1E). This way, not only is the main ISV occluded, but collaterals and side branches are blocked. Parallel or collateral venous channels that extend below the inguinal ligament must be individually selected and occluded separately. Aberrant vessels or small collaterals that may be difficult to coil can be treated with injection of a liquid sclerosing agent. Embolization with coils has the advantages of being relatively painless and easily controlled, as long as coils are sized correctly. The 0.035-inch coils that range from 5 mm to 8 mm are commonly used, although larger diameters may be needed. The size of the coil should be at least 10% larger than the diameter of the spermatic vein at the level of deployment. If undersized, deployment can result in pulmonary embolization. Coil removal from the pulmonary artery can usually be performed with a snare; however, this requires a second procedure. The risk of significant morbidity is low from this complication.

Many groups, particularly those in Europe, use sclerosants exclusively. The most frequently used are sodium tetradecyl sulfate (Sotradecol) and polidocanol (Aetoxisclerol). A catheter placed into the refluxing segment of the spermatic vein is injected with 3 to 4 cc of sclerosant during Valsalva. Deposition of sclerosant in the pelvic segment of the vein is more effective than at a lumbar level. Care must be taken to avoid reflux below the inguinal ligament because this may produce the complication of chemical phlebitis. Methods to avoid reflux include coil occlusion at the level of the inguinal ligament, test injection with contrast to assess the volume of sclerosant needed, control of the degree of Valsalva during injection, and external compression just above the superior pubic ramus during the injection. The catheter is then left at the orifice of the ISV for 2 to 3 minutes to minimize egress of sclerosant.

If the right side does not demonstrate reflux, we do not routinely embolize it. This helps keep radiation exposure to a minimum. However, for recurrent cases, the threshold for treating the right gonadal vein is much lower.

The procedure typically is performed with conscious sedation and is not particularly painful. Vein ablation with alcohol or cyanoacrylate incites a rapid inflammatory effect and may cause more immediate discomfort and require more analgesia during the procedure. Extra sedation is also required if hot contrast is used as the sclerosant. Patients are ambulated after 2 hours of recovery and are advised to avoid heavy lifting for a week, but they may resume normal activity the following day. Discharge pain medication other than a nonsteroidal anti-inflammatory is rarely necessary.

Complications
Complications of spasm, dissection, perforation, and unselectable anatomy are the leading causes of failure to complete the procedure in 2 to 26% of patients. In patients with intact valves at the confluence with the IVC or renal vein (type IIb or IVb, with aberrant or collateral retrograde flow to a more
caudal incompetent segment of the ISV), spasm or perforation may occur due to difficulty in passage of the catheter and guidewire.21,22 Perforation risk is diminished with the use of hydrophilic wires and microcatheters.21 In the presence of a perforation, the use of sclerosant is not recommended because retroperitoneal injection poses a risk of ureteral stricture. The presence of collateral channels has also been cited as a contraindication to sclerosant injection due to dilution or communication with systemic circulation.27,38 In these cases, as with perforation, the use of coils may permit successful embolization.

Other major complications of transcatheter embolization or sclerotherapy that require prolonged hospital admission or additional procedures are quite rare. The venous puncture-associated complications of an arterial puncture, false aneurysm, and large hematoma are very infrequent (less than 0.4% incidence). Pain can occur with injection of sclerosants; however, this is usually short lived and well controlled with moderate sedation (typically midazolam and fentanyl). Epididymo-orchitis occurs in 0 to 4%.39

Pampiniform plexus phlebothrombosis and phlebitis are the most common complication specific to spermatic vein embolization; it is reported in 0.5 to 3% of procedures.27,34,35 This usually occurs due to passage of sclerosant into the scrotal portion of the varicocele. Symptoms of scrotal pain and swelling begin 24 to 48 hours after the procedure, and the patient may develop a low-grade fever. This should be evaluated with immediate and follow-up duplex ultrasound (6 weeks) to assure there is no sign of testicular necrosis, a very rare complication. Often, the varicocele itself thromboses. Phlebitis will resolve with a short course of oral corticosteroids and ibuprofen. Stronger prescription pain medicine may be required for a few days. Because it is difficult to differentiate phlebitis from infection, antibiotics are also often given.40

Radiation exposure is a common concern when discussing this procedure with urologists and with patients. This is of particular importance when treatment is for fertility issues and in the treatment of the adolescent varicocele. Techniques to limit gonadal radiation exposure include: gonadal shielding, careful beam collimation, use of last image hold for image documentation, and minimization of fluoroscopy dose through the use of low-dose settings. Typically, the procedure can be performed using less than 10 minutes of fluoroscopy time. In a study of 223 patients, measured doses were within range of other diagnostic radiographic procedures, such as CT and nuclear medicine examinations. The mean exposure time was 6.3 minutes, and the mean gonadal dose was 0.49 mSv. This compares with an annual background dose of 2.4 mSv, an abdominal CT dose of 10 mSv, and the threshold associated with the deterministic effect of temporary sterility of 150 mSv.27

Outcomes

TECHNICAL SUCCESS

The methods of varicocele repair continue to evolve as outcomes are variable and variably reported. Despite lower technical success as compared with surgical repair, many favor the percutaneous transcatheter technique as a first-line treatment because it is a minimally invasive outpatient procedure and has minimal complication rates.41 The targeted overall reported technical success rate, as cited by the Journal of Vascular and Interventional Radiology quality improvements guidelines, is 83 to 96%, with a clinical or imaging detected recurrence rate at 6 weeks of 7 to 16%.42 These numbers reflect the range of reported results.33–35,37,39 Reattempts succeed in 50 to 75%, but many proceed to a surgical procedure.

CLINICAL SUCCESS

When technically successful, the clinical outcomes of percutaneous ISV embolization or sclerotherapy are similar to surgical procedures. Semen parameters such as sperm concentration and motility improve in 70 to 82% of patients, and morphology infrequently improves.38,43–46 Clinical, imaging, and laboratory findings that are associated with higher success, as measured by significant improvement in serum parameters or pregnancy rates, include grade III or bilateral varicoceles, persistent reflux on Valsalva, lack of testicular atrophy, varices greater than 3 mm in diameter, normal follicle-stimulating hormone (FSH) level, positive gonadotropin-releasing hormone stimulation test, and total mobile sperm count > 5 million with motility $> 60%$.47–49 There may be benefits even in the azoospermic male, where a 35% improvement in sperm count and motility has been shown, such that half of the in vitro fertilization patients did not require a testicular biopsy to obtain adequate sperm for intracytoplasmic sperm injection.50–52

The efficacy of either surgical or percutaneous varicocele repair to achieve pregnancy is less clear. Pregnancy rates of 32 to 57% are reported after retrograde sclerotherapy or embolization.7,53 Madgar and colleagues reported a randomized controlled trial of high spermatic ligation in men with varicocele as the only demonstrable factor of infertility. They found a significant difference in pregnancy rate of 44% in those treated versus 10% in those not treated.54 Schlegel reviewed 13 controlled studies and found pregnancy rates after varicocele treatment averaged 33%, whereas those in the control arms averaged 16%.55 Marmar and colleagues performed a meta-analysis of five controlled surgical repair studies and found 2.63-fold increased odds of spontaneous pregnancy after varicocelectomy versus no repair.56

On the other side of the argument, Nieschlag and colleagues reported a randomized controlled trial of surgical repair, percutaneous embolotherapy, and
The combination of ovarian point tenderness and postcoital pain have been found 94% sensitive and 77% specific for PCS.67 The etiology of PCS is poorly understood, although it is primarily a consequence of ovarian vein reflux and pelvic varicoceles.68 Venous plexuses surround the uterus, ovaries, vagina, bladder, and rectum with a rich network of anastomoses. As in men, the left ovarian vein drains to the left renal vein and the right ovarian vein drains to the IVC in most individuals. It has been suggested that up to 15% of women lack valves in the left ovarian vein and 6% lack valves in the right.69 Despite the presence of valves, the ovarian vein dilation that occurs with pregnancy can result in valvular incompetence and retrograde blood flow, and PCS has been shown to be more frequent in multigravid women.70 The fact that PCS occurs mostly in premenopausal women and that pain may be reduced after hormonal therapy suggests a hormonal influence.71 Venous outflow obstruction due to extrinsic compression, IVC syndrome, or nutcracker syndrome (superior mesenteric artery [SMA] compression of the left renal vein) can also cause PCS.72,73

The connection between the venous congestion and pain has been demonstrated based on medical and surgical therapies. In a trial of medroxyprogesterone acetate (MPA) therapy, a reduction in venous congestion was significantly associated with a diminished pain score.71 Further, in a study of preoperative female kidney donors, 10% had ovarian varices and 59% of those had CPP. Three quarters of those with both CPP and varices improved after ovarian vein ligation.74

Pelvic ultrasound is commonly used to noninvasively diagnose PCS. The normal pelvic venous drainage is via a few straight channels that are less than 4 mm in diameter. Diagnostic Doppler US findings include multiple tortuous, dilated (> 6 mm) veins around the ovary and the uterus, with slow (< 3 cm/s) or retrograde flow, and dilated arcuate veins across the myometrium. Reversed flow with the Valsalva maneuver corresponds to reflux demonstrated by venography.75 Polycystic changes of the ovaries, either diffuse or focal clusters of 4 to 6 cysts, are found in half of women with pelvic congestion, although usually without the clinical findings associated with abnormal ovarian endocrine function.75 Findings of dilated tortuous veins on CT and MRI have also been described.76,77 Whether discovered on abdominal imaging or suspected by superficial pelvic varices, phlebography remains the gold standard for diagnosis of ovarian or internal iliac venous reflux.

Ovarian Venography

The procedure for the contrast study of the female gonadal veins is similar to that in the male. It can be performed from either a femoral or jugular approach. Methods to improve demonstration of varices include...
injection during Valsalva or using a tilt table to place the patient in a semiuert upright position. Selective catheterization of the left renal and then the ovarian vein is performed, and a venogram is obtained during Valsalva, to assess venous distension and reflux (Fig. 2). In contrast to the male, the right ovarian vein is routinely studied. In addition to providing a roadmap for embolization, venography is valuable in that it identifies reflux or valvular incompetence, demonstrates filling of contralateral veins, and can identify reflux in tributaries of the internal iliac veins. Incompetent iliac veins, when dilated, are also thought to contribute to symptoms and may reduce the effectiveness of ovarian vein embolization. Presence of one or more of the following venographic appearances suggests PCS:

1. Dilation of the ovarian vein (diameter > 6 mm)
2. Ovarian vein reflux
3. Uterine vein engorgement
4. Congestion of the ovarian venous plexus
5. Filling of pelvic veins across midline
6. Filling of vulvovaginal or thigh varicosities

Treatment

In 1993, Edwards et al reported transcatheter embolization of bilateral ovarian vein varices in a woman with PCS that resulted in prolonged symptomatic relief. Similar to spermatic vein embolization, multiple variations on the technique have been described including coil embolization, foamed sodium tetradecyl sulfate with coils, sodium morrhuate and Gelfoam, liquid glue agent, and Amplatzer plug occlusion. Each has been described with favorable results.

After diagnostic venography, and coaxially through the diagnostic catheter or sheath, a 3F microcatheter or a 4F angled or Cobra catheter can be advanced into the caudal ovarian vein. Placement of

Figure 2 (A) Injection at the confluence of the left gonadal vein and the renal vein demonstrates spontaneous flow peripherally and valvular incompetence. (B) There are two visible parallel channels in the middle left gonadal vein. (C) Injection more caudally identifies dilated pelvic veins crossing midline. (D) Postembolization image shows occlusion of the gonadal vein. Note that coils have been placed peripherally as well as across the ostia of the parallel channels.
embolic coils should start at the level of the sciatic notch and progress upward to within several centimeters of the renal vein (Fig. 2D). There is some operator variation in which vessels are embolized. Unlike their for their male counterparts, most authors routinely embolize female patients’ bilateral ovarian veins.\(^{33,36,73,83}\) In addition, some authors have described evaluation and embolization of internal iliac tributaries during the initial therapy or as a routine second procedure;\(^{36}\) however, we reserve internal iliac embolization for clinical (as opposed to radiographic) treatment failures and perform this as a separate procedure if needed 1 to 2 months later. Postprocedure care is similar to that for the male procedure, and same-day discharge is expected.

Complications

Complications of ovarian vein embolization include thrombophlebitis, recurrence of varices in up to 10%, nontarget embolization in 1 to 2%, and potential effects of radiation exposure to the ovaries. There are data showing no effects on menstrual cycle or fertility.\(^{81}\)

Outcomes

Current literature suggests high technical and clinical success rates with low rates of complications. Kwon and colleagues reported unilateral coil embolization treatment of 67 patients, and 82% had either a complete absence of pain or significant improvement.\(^{79}\) In that study, there was a 3% initial complication rate and 3% reported worsening of symptoms. Kim and colleagues reported 127 patients treated with bilateral ovarian and internal iliac vein embolization. Despite the more extensive treatment, they had a similar 83% clinical success at 45 months.\(^{36}\) Improvement was significant with regard to pain perception, dyspareunia, urinary frequency, and number of pain medicines required. A recurrence rate of 5% was noted in this study among patients who showed initial improvement.

Other Treatment Options

Open surgical and laparoscopic ligation of pelvic varices has been performed with excellent clinical success rates of 97 to 100%.\(^{83,85,86}\) These methods are more invasive than percutaneous therapy and they require general anesthesia, at least 2 days of hospitalization, and 2 days to weeks of recovery time. Medical management with MPA has a reported clinical success rate of 75%.\(^{87}\) A recent comparison of MPA and goserelin, a gonadotropin-releasing hormone agonist, found the latter superior in both reduction of clinical pain symptoms and venographic abnormalities.\(^{65}\)

CONCLUSION

Gonadal vein embolization is a minimally invasive, safe, and effective outpatient treatment option in both male and female patients. Treatment of the male varicocele is overshadowed by uncertainty as to its overall utility in improving pregnancy rates. Preference for the transcatheter method is challenged by new minimally invasive surgical techniques. In women with chronic pain attributable to PCS, embolization can reduce or eliminate pain with minimal recovery time and side effects.

REFERENCES

53. Zuckerman AM, Mitchell SE, Venbrux AC, et al. Percuta-
neous varicocele occlusion: long-term follow-up. J Vasc

54. Madgar I, Weissenberg R, Luningfeld B, Karasik A, Gold-
wasser B. Controlled trial of high spastic vein ligation for

55. Schlegel PN. Is assisted reproduction the optimal treat-
ment for varicocele-associated male infertility? A cost-effective-
ness analysis. Urology 1997;49(1):83–90

value of varicocelectomy as a treatment for male subfertility

57. Nieschlag E, Hertle L, Fischedick A, Behre HM. Treatment
of varicocele: counselling as effective as occlusion of the vena

varicocele in subfertile men: The Cochrane Review—a
contrary opinion. Eur Urol 2006;49(2):258–263

59. Dubin L, Amelar RD. Varicocelectomy: twenty-five years of

60. Watanabe M, Nagai A, Kusumi N, Tsbohi H, Nasu Y,
Kumon H. Minimal invasiveness and effectiveness of sub-
inguinal microscopic varicocelectomy: a comparative study
with retroperitoneal and laparoscopic approaches. Int J

children: results with microsurgical varicocelectomy. BJU Int
2005;95(3):399–402

62. Samraj GP, Kuritzky L, Curry RW. Chronic pelvic pain in
women: evaluation and management in primary care. Compr

63. Mathias SD, Kuppermann M, Liberman RF, Lipschutz RC,
Steeger JF. Chronic pelvic pain: prevalence, health-related
quality of life, and economic correlates. Obstet Gynecol 1996;
87(3):321–327

64. Beard RW, Highman JH, Pearce S, Reginald PW. Diagnosis of
pelvic varicosities in women with chronic pelvic pain.
Lancet 1984;2(8409):946–949

65. Soysal ME, Soysal S, Vidian K, Ozer S. A randomized
controlled trial of goserelin and medroxyprogesterone acetate
in the treatment of pelvic congestion. Hum Reprod 2001;
16(5):931–939

66. Taylor HJ. Vascular congestion and hyperemia; their effect
on function and structure in the female reproductive organs;
668

features of women with chronic lower abdominal pain and pelvic

syndrome: early clinical results after transcatheter ovarian

69. Ahlberg NE, Bartley O, Chidekel N. Right and left gonadal
veins. An anatomical and statistical study. Acta Radiol Diagn
(Stockh) 1966;4(6):593–601

anatomy of the genital venous system in female patients with
407

Medroxyprogesterone acetate in the treatment of pelvic pain
1148–1152

72. Scultetus AH, Villavicencio JL, Gillespie DL. The nut-
cracker syndrome: its role in the pelvic venous disorders.

73. d’Archambeau O, Maes M, De Schepper A. The pelvic
congestion syndrome: role of the ‘‘nutcracker phenomenon’’
and results of endovascular treatment. JBR-BTR 2004;
87(1):1–8

74. Belenky A, Bartal G, Atar E, Cohen M, Bachar G. Ovarian
varices in healthy female kidney donors: incidence, morbidity,
and clinical outcome. AJR Am J Roentgenol 2002;179(3):
625–627

75. Park SJ, Lim JW, Ko YT, et al. Diagnosis of pelvic
congestion syndrome using transabdominal and transvaginal

76. Pagani JJ, Thomas JL, Bernardino ME. Computed tomographic
manifestations of abdominal and pelvic venous collaterals. Radiology 1982;142(2):415–419

77. Coakley FV, Varghese SL, Hricak H. CT and MRI of pelvic
429–434

79. Kwon SH, Oh JH, Ko KR, Park HC, Huh JY. Transcatheter
ovarian vein embolization using coils for the treatment of
30(4):655–661

80. Edwards RD, Robertson IR, MacLean AB, Hemingway AP.
Case report: pelvic pain syndrome–successful treatment of a
429–431

due to pelvic congestion syndrome: the role of diagnostic
and interventional radiology. Cardiovasc Interv Radiol 2007;
30(6):1105–1111

82. Venbrux AC, Chang AH, Kim HS, et al. Pelvic congestion
syndrome (pelvic venous incompetence): impact of ovarian
and internal iliac vein embolotherapy on menstrual cycle and
171–178

83. Maleux G, Stockx L, Wilms G, Marchal G. Ovarian vein
embolization for the treatment of pelvic congestion syn-
drome: long-term technical and clinical results. J Vasc Interv
Radiol 2000;11(7):859–864

Vascular Plug Also for Ovarian Vein Embolization. Car-
diovasc Intervent Radiol 2007;31(2):446–447

85. Gargiulo T, Mais V, Brokaj L, Cossu E, Melis G. Bilateral
laparoscopic transperitoneal ligation of ovarian veins for
treatment of pelvic congestion syndrome. J Am Assoc
Gynecol Laparosc 2003;10(4):501–504

cavernous varicocele occlusion: long-term follow-up. J Vasc

controlled trial of medroxyprogesterone acetate and psycho-
therapy for the treatment of pelvic congestion. Br J Obstet
Gynaecol 1989;96(10):1153–1162
Comparison of Treatments for Pelvic Congestion Syndrome

MIN-HYUNG CHUNG and CHU-YEOP HUH

Department of Obstetrics and Gynecology, College of Medicine, Kyung-Hee University, Seoul, Korea

CHUNG, M.-H. and HUH, C.-Y. Comparison of Treatments for Pelvic Congestion Syndrome. Tohoku J. Exp. Med., 2003, 201 (3), 131–138 — To evaluate the efficacy of various treatments for pelvic congestion syndrome in patients with different stress levels, we analyzed one hundred six patients with pelvic congestion syndrome, confirmed with laparoscopy and venography, who did not respond to medication after 4–6 months medication. They were divided into three groups: (embolotherapy; hysterectomy with bilateral oophorectomy and hormone replacement therapy; and hysterectomy with unilateral oophorectomy). The visual analog scale was used to measure degree of pain; stress level data were scored with the revised social readjustment rating scale. Embolotherapy was significantly more effective at reducing pelvic pain, compared to the other methods ($p < 0.05$). The mean percentage decrease in pain was significantly greater in the patients with lower stress scores ($p < 0.05$). Ovarian and/or internal iliac vein embolization appears to be a safe, well-tolerated, effective treatment for pelvic congestion syndrome that has not responded to medication. —— pelvic congestion syndrome; embolotherapy; hysterectomy

© 2003 Tohoku University Medical Press

Chronic pelvic pain (CPP), defined as non-cyclic abdominal and pelvic pain lasting at least 6 months, is a common and debilitating condition in reproductive aged women and may account for approximately 10% of outpatient gynecologic visits (Robinson 1993). It can negatively affect the quality of life and personal relationships of women, and result in physical and psychological suffering. There are several possible causes of CPP, including the reproductive, urologic, musculoskeletal, neurologic, or gastrointestinal organ systems. In some cases CPP has been associated with the presence of pelvic vein congestion. The association of ovarian and pelvic varices with chronic pelvic pain was first reported in late 1950s (Topolanski-Sierra 1958). Social and psychological factors have been assumed to play a role in the genesis of CPP in a significant subgroup of women, but their precise role remains unclear.

Partial suppression of ovarian function with medroxyprogesterone acetate (MPA, Provera, UpJohn Ltd., Kalamazoo, MI, USA)

Received August 6, 2003; revision accepted for publication September 24, 2003.
Address for reprints: Min-Hyung Chung, Department of Obstetrics and Gynecology, College of Medicine, Kyung-Hee University, 1 Hoeki-dong, Dongdaemun-gu, Seoul 130-702, Korea.
e-mail: webhospital@naver.com
showed significant relief of pain and a reduction of congestion after four months of therapy (Par- quhar et al. 1989). A number of women who experienced pain relief while receiving MPA faced the return of pain at the end of the trial, with no satisfactory alternative medical treatment. Therefore, it was suggested that bilateral oophorectomy might provide a permanent cure (Beard et al. 1991). Oophorectomy would be combined with hysterectomy to avoid withdrawal bleeding associated with prolonged hormone replacement therapy (HRT). However, as Taylor (1949) pointed out, the genital organs of these women were essentially normal, and surgery may be premature.

Transcatheter embolotherapy is a well-established technique used to treat males with varicoceles. By using minimally invasive imaging-guided techniques similar to those used in treating male varicoceles, female patients with pelvic congestion syndrome (PCS) may be treated effectively with embolization. The goals of our research were to assess the treatment efficacy of ovarian vein and/or internal iliac vein embolotherapy, and to compare it to the efficacy of hysterectomy for chronic pelvic pain due to venous congestion syndrome. We also evaluated the relationship between stress and the clinical efficacy of each treatment method.

Material and Methods

Patient selection

From November 1998 to December 2002, 164 women (13.2%) of 1246 patients evaluated in the chronic pelvic pain clinic were diagnosed with PCS through exclusion of other causes of chronic pelvic pain. Diagnoses were confirmed with diagnostic laparoscopy and venography of ovarian and internal iliac veins sequentially. All subjects received complete physical examinations, including a comprehensive history, diagnostic imaging studies, and laparoscopy to rule out pathologies (myoma, endometriosis, adhesion etc). The pain was not successfully treated with 4–6 months MPA treatment in 118 patients, who were then enrolled in this study. After IRB approval, all the women gave written informed consent and were counseled with their partners before therapy. The patients were divided into three groups randomly: ovarian vein embolization (Group A, n=52), hyster-

![Fig. 1](image_url). Representative left ovarian vein venography shows dilated ovarian and pelvic veins (right arrow) and venous engorgement and congestion extending across the midline (left arrow). Note the contrast material refluxed into the ipsilateral and contralateral internal iliac veins.
ectomy with BSO and HRT (Group B, n=32), and hysterectomy with affected USO (Group C, n=34). Nine women were excluded in operative groups (5 in group B, 4 in group C) due to their pathologic results (myoma [n=4], adenomyosis [n=5]). Another three in group C were excluded because they got hysterectomy and USO though they had bilateral involvement.

Pain intensity was gauged on a 0–10 visual analog scale (VAS), with 0 indicating no pain and 10 indicating unbearable pain (Grossman et al. 1992). All patients were assessed before treatment, and at the 3-, 6-, and 12-month follow-up visits. The VAS scale was used to blind the patients to a numeric pain score, and to reduce recall bias. Life changes during the preceding twelve months were analyzed with stress scoring questionnaires based on the revised social readjustment rating scale (SRRS) (Hobson et al. 1988). Patients were classified into three subgroups according to their stress scores (subgroup 1: 100–199; typical stress level, subgroup 2: 200–299; moderate high stress level, subgroup 3: >300; very high stress level). Most of the patients took analgesics occasionally, but none were treated with opiates. Follow-up was performed on a clinical basis and patients were asked to compare their pain before and after treatment.

Venography

All patients included in the study underwent minimally invasive transcatheter venography through the common femoral vein under local anesthesia with the valsealva maneuver (Fig. 1). For each subject, we measured the ovarian vein diameter and contrast material retention time (from injection to disappearance). We also observed evidence of (1) reflux, (2) uterine venous engorgement, (3) congestion of the ovarian plexus, (4) filling of pelvic veins across the midline. We also noted the presence of thigh and/or vulvovaginal varicosities.

We used a modification of the pelvic venogram scoring system that was reported in 1984 to assess venography results (Beard et al. 1984). The criteria used to diagnose PCS were: (1) ovarian vein diameter ≥6 mm, (2) contrast medium retention time >20 seconds, (3) existence of congestion in the pelvic venous plexus and/or opacification of the ipsilateral (or contralateral) internal iliac vein, and/or (4) filling of vulvovaginal and thigh varicosities. Each variable was assigned a value between one and three, depending on the degree of abnormality. A venogram score ≥5 indicated the presence of PCS. After venography, patients were admitted for analgesics, antiemetics, and antibiotics. There was no side effect excluding occasional mild nausea and discomfort on thigh.

Embolization

Fifty-two patients in Group A (embolotherapy group) were embolized with the optimal number and size of coils (Cook, Bloomington, IN, USA). Coils were placed below the origin of renogonadal or other collaterals. Embolization was usually done at the lower half of the sacroiliac joint, to assure complete embolization of the ovarian vein and avoiding embolization of the deep pelvic plexus (Fig. 2). Initial technical success rate was 96.2% and two patients (3.8%) had complications. The coils were placed in abnormal positions to embolize to the pulmonary circulation in one case and the renal circulation in the other case. Those coils were snared without any clinical sequelae and the two were retreated with embolization.

Hysterectomy and oophorectomy

Hysterectomy was performed by the pelvic classical infrasacral SEMM hysterectomy (CISH) method. There were 27 women in Group B who had hysterectomy with bilateral oophorectomy. These patients received HRT after surgery. There were 27 women in Group C who had hysterectomy and removal of only the affected ovary.
Fig. 2. Multiple large coils (arrows) were placed stepwise in the left ovarian vein in the caudocranial direction. Venography immediately after embolization shows the complete occlusion of the left ovarian vein, note that there is no contrast opacification of embolized ovarian vein.

Statistical analysis

Data were analyzed with the SAS statistical package (Cary, NC, USA). The chi-square test, Kruskal-Wallis test and Friedman test were used where appropriate. A p-value of <0.05 was considered significant.

RESULTS

Table one shows the demographic characteristics of the 106 patients enrolled in this study. There were 90 patients with left unilateral venous congestion, 8 with right unilateral venous congestion, and 8 with bilateral venous congestion on venography. Four subjects (one patient in each group A, and C, two patients in group B) also had thigh varicosities. All 106 patients complained of lower abdominal and/or pelvic pain. Other symptoms reported by these patients included lower back pain (57.6%), urinary frequency (25.1%), dyspareunia (15.0%), and dysmenorrhea (12.8%). None of the subjects were menopausal.

The difference in mean pain scores at each follow-up visit, compared with the pretreatment score was significantly decreased in Groups A and B ($p < 0.05$), but not in Group C. The stress scores and pain level data for each treatment group is shown in Table 2. There were no significant differences in stress scores and pain values between the three groups ($p > 0.05$). The percent decrease in pain for each stress-level subgroup within Groups A, B, and C is shown in Table 3. For patients in subgroups 1 and 2, embolotherapy showed a significant decrease in pain at all follow-up visits compared to the other therapies ($p < 0.05$). However, for patients in subgroup 3, embolotherapy showed a significant decrease in pain only at the 6-month follow-up ($p < 0.05$).

DISCUSSION

Pelvic congestion syndrome (PCS) is a frequently overlooked cause of debilitating chronic pelvic pain (CPP) in women. The etiology of pelvic congestion is still unclear, but many underlying factors, both psychological and somatic, are believed to contribute to this disorder. It has recently been suggested that the primary problem is venous reflux in dilated,
TABLE 1. Clinical characteristics of patients

<table>
<thead>
<tr>
<th></th>
<th>Treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group A (n=52)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>40.1±4.9§</td>
</tr>
<tr>
<td>Parity</td>
<td>2.4±1.1</td>
</tr>
<tr>
<td>Nulliparous</td>
<td>4 (7.7%)</td>
</tr>
<tr>
<td>Sx duration (months)</td>
<td>32.9±21.6</td>
</tr>
<tr>
<td>Ov. vein diameter (mm)</td>
<td>8.4±1.5</td>
</tr>
<tr>
<td>Lt side involvement</td>
<td>43 (82.7%)</td>
</tr>
<tr>
<td>Rt side involvement</td>
<td>4 (7.7%)</td>
</tr>
<tr>
<td>Both sides involvement</td>
<td>5 (9.6%)</td>
</tr>
<tr>
<td>Venogram score</td>
<td>6.5±1.1</td>
</tr>
<tr>
<td>Hospital stay (days)</td>
<td>0.3±0.4</td>
</tr>
<tr>
<td>Complication (%)</td>
<td>3.8</td>
</tr>
<tr>
<td>Baseline VAS</td>
<td>7.8±1.2</td>
</tr>
<tr>
<td>3-month F/U VAS</td>
<td>4.5±0.9 (42.3±3.8)*</td>
</tr>
<tr>
<td>6-month F/U VAS</td>
<td>4.3±0.8 (44.9±4.8)*</td>
</tr>
<tr>
<td>12-month F/U VAS</td>
<td>3.2±0.9 (59.0±4.2)*</td>
</tr>
<tr>
<td>Follow-up (months)</td>
<td>26.6±5.2§</td>
</tr>
</tbody>
</table>

VAS, visual analog scale.
*\(\text{p} \leq 0.05 \)
Values are mean±s.d.
Figures in parentheses indicate percentage of pain decrease.

TABLE 2. Details of the stress score and pain by treatment group

<table>
<thead>
<tr>
<th></th>
<th>Treatment group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group A (n=52)</td>
</tr>
<tr>
<td></td>
<td>(n=27)</td>
</tr>
<tr>
<td>Subgroup 1 (100-199)</td>
<td>Mean SRRS</td>
</tr>
<tr>
<td>Mean VAS</td>
<td>7.8±1.0</td>
</tr>
<tr>
<td>(n=18)</td>
<td>(n=7)</td>
</tr>
<tr>
<td>Subgroup 2 (200-299)</td>
<td>Mean SRRS</td>
</tr>
<tr>
<td>Mean VAS</td>
<td>7.8±0.8</td>
</tr>
<tr>
<td>(n=7)</td>
<td>(n=5)</td>
</tr>
<tr>
<td>Subgroup 3 (>300)</td>
<td>Mean SRRS</td>
</tr>
<tr>
<td>Mean VAS</td>
<td>7.9±0.7</td>
</tr>
</tbody>
</table>

VAS, visual analog scale; SRRS, social readjustment rating scale.
Values are mean±s.d.
Table 3. Percentage of pain decrease in different revised SRSS level with each treatment method

<table>
<thead>
<tr>
<th>Revised SRSS level</th>
<th>Group A (n=52)</th>
<th>Group B (n=27)</th>
<th>Group C (n=27)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subgroup 1 (100-199)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-month F/U</td>
<td>44.9±3.8*</td>
<td>35.9±2.9</td>
<td>32.8±4.9</td>
</tr>
<tr>
<td>6-month F/U</td>
<td>47.4±4.1*</td>
<td>40.4±3.8</td>
<td>33.4±3.7</td>
</tr>
<tr>
<td>12-month F/U</td>
<td>61.5±5.1*</td>
<td>46.5±3.5</td>
<td>34.6±3.8</td>
</tr>
<tr>
<td>Subgroup 2 (200-299)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-month F/U</td>
<td>44.9±4.1*</td>
<td>34.9±3.5</td>
<td>31.9±4.6</td>
</tr>
<tr>
<td>6-month F/U</td>
<td>48.6±3.6*</td>
<td>39.1±4.5</td>
<td>32.6±4.0</td>
</tr>
<tr>
<td>12-month F/U</td>
<td>56.4±4.6*</td>
<td>45.6±2.9</td>
<td>33.3±4.4</td>
</tr>
<tr>
<td>Subgroup 3 (>300)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-month F/U</td>
<td>23.2±3.5</td>
<td>32.2±3.3</td>
<td>31.2±4.3</td>
</tr>
<tr>
<td>6-month F/U</td>
<td>38.8±4.2*</td>
<td>34.8±3.5</td>
<td>32.7±4.2</td>
</tr>
<tr>
<td>12-month F/U</td>
<td>40.2±4.6</td>
<td>39.5±4.6</td>
<td>33.4±4.8</td>
</tr>
</tbody>
</table>

SRSS, social readjustment rating scale.
* \(p \leq 0.05 \)

Values are mean±s.d.

incompetent ovarian veins (Cordts et al. 1998). It is postulated that higher incidence of PCS in the left side is induced by the absence of ovarian vein valves, reported in the left side in 15% and in the right side in 6% of women (Ahlberg et al. 1966) and the anatomical difference of right and left ovarian venous drainage. The incompetent valves allow the blood to flow backwards and pool in the veins. The veins in the affected body part become chronically dilated, and may lead to a chronic condition of dull pelvic pain, pressure and heaviness.

Patients with CPP report a high incidence of anxiety, depression, physical worries, and marital/sexual problems. Severe psychological disturbances in childhood, particularly sexual abuse, have also been reported (Walling et al. 1994). It has been suggested that CPP is a disorder of the pelvic autonomic nervous system arising in socially or psychiatrically predisposed individuals (Beard et al. 1984). These people have inherited a low stress tolerance and are more susceptible to stress. Low stress tolerance runs very strongly in families, and we noticed some incidences of familial tendency of PCS in our study. These women have higher incidence of deaths and illnesses among family members and close relatives, which makes them pay more attention to physical complaints such as pain. This in turn may make them more susceptible to the environmental stress of daily life.

Women appear to be more vulnerable to stress-induced illnesses than men for a variety of reasons. This is especially problematic in Korea, where women are expected to be caretakers of family and home despite careers. They are also less able to control their environment than many men. Anger at the social and economic inequities they face adds to their overstressed physical condition, exacerbating stress-related conditions.

Effects of stress are typically manifested in autonomically innervated structures, especially in smooth muscles, including the smooth muscles of blood vessel walls. The pelvic organs, with the exception of the ovary, are largely smooth muscles with a rich supply of blood vessels. Hence, the effects of emotional stress in the pelvis may manifest as a vascular distur-
bance (Taylor 1949). In addition, there are rapid changes in blood flow in the pelvis that accompany environmental stress, and since the blood veins in the pelvis are unsupported, they may be particularly predisposed to congestion (Beard et al. 1984).

Currently, treatment for PCS includes counseling or psychotherapy, progestogen (MPA) therapy, and surgery. Medications have been used successfully, although they may not provide long-term relief. When medical treatment fails, hysterectomy or embolotherapy have been shown to successfully control pelvic pain and restore normal coital function and daily life (Reginal et al. 1989; Beard et al. 1991; Venbrux et al. 2002). However, the efficacy of these treatments has not been compared before now.

The results of this study show that ovarian vein and/or internal iliac vein embolization is safe, well tolerated, and effectively alleviates CPP due to venous congestion. This treatment was compared to hysterectomy with either bilateral or unilateral (affected) oophorectomy. We found that hysterectomy with unilateral oophorectomy was the least effective treatment. We also examined the effect of stress on treatment efficacy. Embolotherapy was more effective method for typically or moderately highly stressed patients than hysterectomy. But for very highly stressed patients, the effect of embolotherapy seems not to be prolonged. So the additional treatments (e.g., Counseling or psychotherapy) should be considered.

There are several advantages to embolotherapy over hysterectomy, including less postoperative pain and improved cosmesis. There is also a shorter lag time between diagnosis and treatment, since embolotherapy can be performed immediately after diagnostic venography. Hysterectomy is associated with a longer hospital stay, delayed restoration to normal daily life, and poor cosmetic results. Bilateral oophorectomy in women of reproductive age is not a procedure to be undertaken lightly, and in this study it was only done as a last resort.

In conclusion, percutaneous transcatheter embolization of ovarian veins and/or the internal iliac vein is a safe and minimally invasive treatment option for the treatment of PCS. Long-term clinical success may be achieved with this treatment, and hence it may replace traditional surgical approaches for PCS intractable to medication. Long-term follow-up of these patients is needed, and post-embolization ultrasonography may be useful for documenting the recurrence of congestion. In addition, the impact of embolotherapy on fertility and ovarian function should be studied further.

References

